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A mathematical model is developed to investigate the effects of aerodynamic damping on the maximum

amplification factor ofmistuned bladed disks. LINSUB, an inviscid linearized unsteady aerodynamic damping code,

provides aerodynamic damping influence coefficients that are incorporated into a partial-mistuningmodel that takes

advantage of mode localization. This mistuning analysis is then used to demonstrate the effects of aerodynamic

damping on the maximum amplification factor of mistuned bladed disks. The relative importance of aerodynamic

effects is determined by a comparison of aerodynamic damping and structural damping factors. It is shown that

neglecting unsteady aerodynamics may result in the predicted optimal mistuning pattern not being optimum in the

actual operating environment wherein unsteady aerodynamic effects are present.

Nomenclature

C
_k

j = aerodynamic influence of the motion of airfoil k on
airfoil j

C��r� = unsteady aerodynamic coefficient
c = airfoil chord length
hk = tuned response to single airfoil forcing on airfoil k
k = reduced frequency, !c=U
kc = structural coupling stiffness
kj = structural stiffness of airfoil j
kt = mean or tuned structural stiffness
Lj = generalized aerodynamic force of airfoil j
m = generalized inertia per unit span
N = number of airfoils in row
ND = nodal diameter
r = engine order of excitation
s = number of airfoils affected by mistuning
u = fluid velocity
X = generalized displacement
�r = interblade phase angle, 2�r=N

�kj = dimensional aerodynamic influence coefficient

�kj = mistuned stiffness of airfoil j
� = fluid density
�mech = dimensionless mechanical damping factor
�aero = dimensionless aerodynamic damping factor
!r = resonant frequency of airfoil row

Superscripts

d = directly affected by mistuning
i = indirectly affected by mistuning
t = tuned

I. Introduction

H IGH cycle fatigue (HCF) of turbomachine blading resulting
from flow-induced vibration is a significant problem through-

out the gas turbine industry. To address this problem, various
approaches have been developed to predict airfoil resonant response.
In these, the response of a tuned airfoil row, that is, a rotor with
all airfoils having the same structural properties and thus identical
natural frequencies, is analyzed.

In fact, there are small airfoil-to-airfoil structural property
variations that result, for example, from themanufacturing process or
as a consequence of in-servicewear. These are collectively referred to
as mistuning and are known to lead to significant increases in airfoil
resonant response amplitude as compared to that of the tuned airfoil
row, with mistuning thus often cited as an HCF source. Hence, the
key metric that characterizes the resonant response of mistuned
bladed disks is the amplification factor, the ratio of the largest res-
ponse amplitude of a mistuned bladed disk to that of a tuned bladed
disk.

The earliest mistuning analyses were deterministic and used
simplified models to produce closed-form expressions to bound the
mistuned rotor maximum response [1,2]. More recently, Kenyon and
Griffin developed a more general analysis that recovers earlier
closed-form expressions as special cases [3]. Direct numerical opti-
mization to estimate the maximal response over a set of mistuning
variations is an alternative deterministic approach [4,5]. Of particular
interest herein is the mistuning model developed by Rivas-Guerra
and Mignolet that takes advantage of mode localization by only
considering a few airfoils on the rotor, that is, airfoils far from the
maximum amplitude airfoil can be considered as tuned airfoils [6].
This partial-mistuning model results in a reduction in the number of
variables in the optimization procedure to determine the mistuning
pattern that results in the largest amplification factor.

One significant phenomenon not addressed in these mistuning
models is the airfoil row unsteady aerodynamics. Because damping
is known to be the important parameter controlling maximum reso-
nant response amplitude, it might be expected that the unsteady
aerodynamics resulting from thevibration of the blading itself, speci-
fically the aerodynamic damping, will have a significant effect on the
resonant response amplitude of tuned and mistuned bladed disks.
Note that the mechanical damping is considerably reduced in newer
rotor designs, particularly those with integral bladed rotors (IBRs)
and those without shrouds. As a result, it is anticipated that aerody-
namic damping will be particularly important in the vibratory
stress analysis of IBRs. Specifically, IBRs inherently have very low
mechanical damping as compared to a traditional bladed rotor.
This very low mechanical damping of IBRs implies that they are
highly susceptible to HCF and also that aerodynamic damping is a
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significant component of the IBR damping and, thus, an important
consideration.

Two families of techniques are used to predict aerodynamic
damping of blade rows: time marching and time linearized. Time-
marching techniques applied to the fluid equations are the most
widely used. In time-linearized analyses, the fluid equations are
linearized by considering theflowunsteadiness to be small compared
to the mean flow. The resulting small disturbance equations are
then solved assuming that the disturbance flow is harmonic with a
constant interblade phase angle between adjacent blades. Time-
linearized models are computationally very efficient as compared to
time-marching ones. Thus, they arewell suited for use in a mistuning
simulation, which is directed at determining the maximum ampli-
fication factor of a mistuned rotor.

Unfortunately, the basic assumptions inherent in both time-
marching and linearized unsteady aerodynamic damping analyses
are too restrictive for mistuning simulations. Specifically, the airfoils
are required to oscillate harmonically with uniform amplitude and
a constant phase relationship or interblade phase angle between
airfoils. However, if there are airfoil-to-airfoil material differences,
that is, mistuning, the mistuned airfoils respond in modal patterns
that violate the assumptions of uniform vibration amplitude and
interblade phase angle.

The vibration of mistuned bladed disks with both structural and
aerodynamic coupling has been examined [7–13]. However, recently
developed reduced-order modeling methods provide a new oppor-
tunity to investigate this issue more thoroughly. The compo-
nent mode mistuning [14] (CMM) and subset of nominal system
modes [15] formulations were presented with unsteady aerodynamic
terms included in the system equations of motion. Research has been
recently initiated by Kielb et al. [16] using the FMMmethod and He
et al. [17] using the CMM method.

This paper is directed at investigating the effects of aerodynamic
damping on the amplification factor of mistuned rotors. First, the
restrictions of uniform blade vibration amplitude and constant
interblade phase angle are removed, accomplished by determining
the influence coefficients that characterize the aerodynamic damping
of each airfoil oscillating with its own unique amplitude. This
aerodynamic damping influence coefficient analysis is then incor-
porated into a lumped parameter mistuning model that takes
advantage of mode localization by considering any specified number
of airfoils on the row. This mistuning analysis including unsteady
aerodynamic damping is then used to demonstrate the effects of
aerodynamic damping on the maximum amplification factor of
mistuned rotors.

II. Unsteady Aerodynamic Model

LINSUB [18] is a semi-analytic unsteady aerodynamic model for
turbomachinery geometries. The model simplifies the turbomachi-
nery blade row to a two-dimensional cascade of flat plate airfoils,
with the flow unsteadiness a small perturbation from the uniform
steady flow. Under these assumptions, LINSUB can model a wide
range of unsteady flow phenomena, including self-induced cas-
cade vibrations, cascade response to gusts, and cascade response to
upstream-going and downstream-going acoustic waves. In each, the
LINSUBmodel predicts the unsteady pressure on the cascade airfoils
as well as the upstream-going and downstream-going acoustic
signals created by the cascade.

LINSUB requires six inputs: 1) number of control points on the
airfoil np, 2) spacing-to-chord ratio s=c, 3) stagger angle �, 4) Mach
numberM, 5) reduced frequency kc, and 6) interblade phase angle �.
The elastic axis positionmust also be input, but its value has no effect
in this study. The number of control points for all the cases is set to 30,
determined by means of a study that demonstrated that round-off
error for single-precision LINSUB becomes significant for npmuch
greater than 30.

LINSUB requires the interblade phase angle to be specified as a
consequence of the assumption that the airfoils oscillatewith uniform
amplitude and a known constant phase shift from airfoil to airfoil. In a
mistuned bladed disk, the airfoils respond in modal patterns that

violate the assumption of uniform amplitude and phase shift. Thus, to
predict the unsteady aerodynamics of a mistuned airfoil row, the
interblade phase angle restriction must be removed. This is accom-
plished by means of an unsteady aerodynamic influence coefficient
technique [19,20]. Namely, for a given mean flowfield and reduced
frequency of oscillation, the cascade unsteady aerodynamics are
expressed in terms of linearly combined influence coefficients. These
influence coefficients can then be used to predict the unsteady aero-
dynamics of a mistuned airfoil row.

For a finite cascade with N airfoils executing constant amplitude
harmonic oscillations with a constant interblade phase angle �r, the
unsteady aerodynamic lift or moment coefficient C��r� for the
cascade can be expressed as the sum

C��r� �
XN�1
k�0

C
_k

je
�i�k�j��r (1)

where C
_k

j are the complex unsteady aerodynamic influence
coefficients that define the unsteady lift or moment developed on
airfoil j due to themotion of airfoil kwith all other airfoils stationary.

The term e�i�k�j��r satisfies the requirement thatC��r� is the lift or
moment when all airfoils are oscillating with a constant interblade
phase angle�r � 2�r

N
, where r is an integer engine order ranging from

0 to N � 1. Thus, C��r� has a fundamental period of 2�.

The unsteady aerodynamic influence coefficients C
_k

j are not
known directly, but C��r� is determined directly from LINSUB.

Thus, theC
_k

j are determined by inverting Eq. (1), that is, multiplying
both sides of the equation by ei�k�j��r and integrating over �r from 0
to 2� [9]:

C
_
k
j �

1

2�

Z
2�

0

C��r�ei�k�j��r d�r (2)

Integrating with the rectangle rule gives

C
_
k
j �

1

N

XN�1
r�0

C��r�ei�k�j��r (3)

An example of the moment-due-to-torsion coefficient variation
with �r predicted by LINSUB is shown in Fig. 1. Integrating
according to Eq. (3) yields the influence coefficients for airfoil j
shown in Fig. 2. As expected, the largest influence comes from airfoil
j itself, with the influence of neighboring airfoils quickly decreasing
away from airfoil j.

For a tuned airfoil row,C��r� determined fromLINSUBwould be
sufficient to model aerodynamic effects because the row oscillates
with constant interblade phase and amplitude. However, for a

mistuned airfoil row, the C
_k

j are key in providing the unsteady
aerodynamic effects when there is no constant phase relation
between airfoils and vibration amplitudes differ from airfoil to
airfoil.

III. Mathematical Model

Themistuned rotor forced responsemodel including aerodynamic
damping and coupling effects is depicted in Fig. 3. Note that kc is the

Fig. 1 Moment-due-to-torsion coefficient: LINSUB.
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structural airfoil-to-airfoil coupling stiffness; kaeroc is the unsteady
aerodynamic airfoil-to-airfoil coupling stiffness, that is, the real part
of the unsteady aerodynamic loading; and �aero is the unsteady
aerodynamic damping, that is, the imaginary part of the unsteady
aerodynamic loading.

The dimensional equation of motion for airfoil j is

m �Xj � �c _Xj � �kj � 2kc�Xj � kcXj�1 � kcXj�1 � Lj � Fj�t� (4)

where Fj�t� is the forcing function; Xj is the generalized
displacement of airfoil j; �c is the structural damping of airfoil j; kc is
the airfoil-to-airfoil structural coupling stiffness, that is, the effect of
the airfoils being coupled to one another through the disk; kj is the
structural stiffness of airfoil j; andLj is the sum total of aerodynamic
forces on airfoil j due to the vibration of each airfoil in the row, with
this term including the effects of aerodynamic damping �aeroj and

aerodynamic coupling stiffness kaerocj
.

Equation (4) applies to a two-dimensional slice through the airfoil
row andmodels any single-degree-of-freedom (SDOF)mode such as
bending, torsion, or chordwise bending. For example, if torsion is
modeled,m is the moment of inertia,Lj is the aerodynamic moment,
Fj�t� is the forcing function specified in terms of time varying
moment, and Xj is the angular displacement of airfoil j.

The generalized aerodynamic force depends on the SDOF mode
being considered:

Lj �
XN�1
k�0
�C
_k

j �L�u2c2Xk Bending

Lj �
XN�1
k�0
�C
_k

j �M�u2c2Xk Torsion

Lj �
XN
k�1
�C
_k

j �CW�u2c2Xk Chordwise Bending (5)

where � denotes the fluid density, c denotes the airfoil chord, and the
superscripts L, M, and CW on the influence coefficients denote lift
due to bending, moment due to torsion, and chordwise bending.

An engine order excitation r is considered, with the forcing
function expressed as

Fj�t� � F0e
i�!rt��j�1��r � (6)

where the frequency of excitation equals the natural frequency of the
mode.

Neglecting unsteady aerodynamic effects and structural damping
yields the natural frequencies of the system in the closed form.
Equation (4) can be rewritten as a first-order differential equation:

_q� �D�q (7)

where q� fx1; _x1; x2; _x2; . . . ; xN; _xNgT .
The system matrix �D� can be expressed as

�D� �

D1 D2 D3 � � � DN

DN D1 D2 � � � DN�1

DN�1 DN D1 � � � DN�2

..

. ..
. ..

. . .
. ..

.

D2 D3 D4 � � � D1

2
666666664

3
777777775

�

A B 0 � � � B

B A B � � � 0

0 B A � � � 0

..

. ..
. ..

. . .
. ..

.

B 0 0 � � � A

2
666666664

3
777777775

(8)

where �D� is a cyclosymmetric matrix:

A� 0 1
kt�2kc
m

0

� �
; B� 0 0

� kc
m

0

� �
(9)

and kt is the tuned or mean structural stiffness of the individual
airfoils.

The eigenvalues of this block circular matrix �D� can be expressed
as eigenvalues of a 2 	 2 matrix Qp:

Qp �D1 � dpD2 � d2pD3 � � � � � dN�1p DN

�
0 1

kt�2kc�kcei
2�p
N �kcei

2�p�N�1�
N

m
0

" #
�

0 1

kt�4kcsin2��p=N�
m

0

" #
(10)

where dp � exp�i2�p=N�.
The eigenvalues of the Qp matrices are

!p �
������������������������������������������
kt � 4kcsin

2��p=N�
m

r
; p� 0; 1; . . . ; N � 1 (11)

which represent the eigenvalues of the system matrix �D� and, thus,
the natural frequencies of the systemwith damping and aerodynamic
effects neglected. Physically, the integer p is the nodal diameter of
the mode shape.

For real rotors, Eq. (11) is a good approximation to the true
resonant frequency because damping from both mechanical and
aerodynamic sources is much less than the critical damping value.

The forced response of each airfoil is assumed to be harmonic at
the forcing function frequency !r:

Xj�t� � xjei!rt j� 1; 2; . . . ; N (12)
Equation (4) being forced at frequency !r thus becomes

� � � � �
j�2
j xj�2 � �kc � �

j�1
j �xj�1 � ��kj � 2kc cos�r

� i!r �c � �
j
j�xj � �kc � �

j�1
j �xj�1

� �
j�2
j xj�2 � � � � � Foei�j�1��r (13)

where �kj � kj � kt is themistuned stiffness of airfoil j, and� repre-

sents the following aerodynamic terms: �kj � i!�uc�C
_k

j �L for bend-
ing, �kj � �u2c2�C

_k

j �M for torsion, and �kj � �u2c2�C
_k

j �CW for

chordwise bending.

Fig. 2 Influence coefficient.

Fig. 3 Airfoil row SDOF model.
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Equation (13) can be rewritten in matrix form as

D
_ 1

1 ��kc � �2
1� ��3

1 � � � ��kc � �N1 �

��kc � �1
2� D

_ 2

2 ��kc � �3
2� � � � ��N2

��1
3 ��kc � �2

3� D
_ 3

3 � � � ��N3
..
. ..

. ..
. . .

. ..
.

��kc � �1
N� ��2

N ��3
N � � � D

_N

N

2
6666666664

3
7777777775

	

8>>>>>>>>><
>>>>>>>>>:

x1

x2

x3

..

.

xN

9>>>>>>>>>=
>>>>>>>>>;
�

8>>>>>>>>><
>>>>>>>>>:

F0

F0e
i�r

F0e
i2�r

..

.

F0e
i�N�1��r

9>>>>>>>>>=
>>>>>>>>>;

(14)

where D
_ j

j � �kj � 2kc cos�r � i!r �c � �
j
j.

Solving the linear system of Eq. (14) for a given set of mistuned
stiffnesses �kj and aerodynamic and structural conditions yields the
mistuned response of the system including unsteady aerodynamic
effects.

IV. Unsteady Aerodynamic and Structural Effects

The importance of aerodynamic effects relative to the structural
effects is ascertained by examination of Eq. (14). The structural or
mechanical damping effect is the imaginary part of the diagonal term,
that is,!r �c. Aerodynamic damping results from the imaginary part of
�kj and is present in every term in the coefficient matrix of Eq. (14).

However, the diagonal �, that is, �jj is typically much larger than the

off-diagonal �. Thus, a comparison of !r �c and Im��jj� is a com-

parison of the relative importance of structural damping and
aerodynamic damping. In terms of the nondimensional damping
parameter, these two quantities are

�mech � �c

2m!r
�aero ��

Im��jj�
2m!2

r

(15)

If �mech 
 �aero, aerodynamic damping has little effect, whereas if
�mech � �aero, aerodynamic damping has a large effect.

Structural coupling from airfoil to airfoil appears as kc in Eq. (4),
with these terms directly affecting the j � 1 and j� 1 airfoils. Thus,
the extent to which the unsteady aerodynamics affects this airfoil-to-
airfoil coupling is determined qualitatively by a comparison of kc
with the real parts of�

j�1
j and�

j�1
j , that is, the aerodynamic coupling

stiffness of airfoil j � 1 and j� 1. Typically, unsteady aerodynamic
coupling stiffnesses are much less than structural coupling
stiffnesses, and so it is expected that only for extremely small
structural airfoil-to-airfoil coupling will the unsteady aerodynamic
coupling be important.

V. Partial Mistuning

As mistuning stiffnesses are generally not known during design,
mistuningmodels are directed atfinding the largest possible response
given �a < �kj < a, j� 0; 1; . . . ; N � 1, with a some real number.
Because the number of airfoils on a row can be large, the number of
required solutions to the N 	 N system of Eq. (14) can be pro-
hibitively large. For example, if 100 values of �kj yields adequate
resolution between�a and a, then for a 72-bladed rotor, the 72 	 72
system of Eq. (13) must be solved 10144 times.

The partial-mistuning model mitigates this difficulty by reducing
the number of airfoils on the row that needs be included, an approach
that takes advantage of themode localization phenomenon. Thus, for
the present model it is necessary to consider only a sector of the
annulus containing s airfoils such that j 2 �0; p� [ �N � p;N � 1�

with s� 2p� 1 typically much less than N, and p is any integer in
0< p < N=2.

The dynamic behavior of the tuned system, that is, �kj � 0 for all j,
plays a key role in the partial-mistuning solution. The tuned system
response to unit forcing acting only on airfoil k is expressed as a
vector of length N defined as hk. That is, hk is the solution to

� � � � �
j�2
j hkj�2 � �kc � �

j�1
j �hkj�1 � �2kc cos�r � i!r �c � �

j
j�hkj

� �kc � �
j�1
j �hkj�1 � �

j�2
j hkj�2 � � � � � �jk (16)

The matrix ~h is defined as the matrix for which the kth column is

hk, that is, ~h� �h0 h1 � � � hN�1 �. Because the system is tuned
and cyclosymmetric, hk�1 is equivalent to hk with each element

shifted down one and element N moved to element 1. Thus, ~h is
determined by a single solution to the N 	 N linear system of
Eq. (16) with k� j.

The mistuned system of equation, Eq. (13), is expressed in matrix
form as

~H x�F (17)

With partial mistuning, only a segment of the airfoils are directly
affected by the mistuning, that is, their mistuning stiffnesses are not
zero, whereas the rest of the airfoils have zeromistuning stiffness but
are indirectly affected bymistuning. Accordingly, the solutionvector
is divided into two parts:

x�
�
xd
xi

�
(18)

where d denotes directly affected by mistuning, and i denotes
indirectly affected by mistuning.

Applying this division to Eq. (17) yields

~Hdd
~Hdi

~Hid
~Hii

� �
xd
xi

� �
� Fd

Fi

� �
(19)

The matrix ~Hdd is expressed as the sum of a tuned matrix and a

mistuned counterpart, that is, ~Hdd � ~Ht
dd �� ~Hdd. �kj is zero in the

other three submatrices, and so these are equivalent to their tuned
system counterparts. Thus, Eq. (19) is rewritten as

~Ht
dd

~Hdi
~Hid

~Hii

� �
xd
xi

� �
� Fd

Fi

� �
� �� ~Hdd

0
xd

� �
(20)

The coefficient matrix of the left-hand side is now equivalent to
the tuned system coefficient matrix. The mistuned problem can thus
be viewed as a tuned system responding to the two right-hand-side
forcing functions. Based on this observation, the tuned system
response to unit forcing on airfoil k, that is, hk, can be used as a basis
for the solution to the mistuned system.

To illustrate, consider a right-hand-side forcing vector with
elements fj, j� 0; 1; . . . ; N � 1. The linearity of the system then
allows the solution to be written as

P
jfjh

j.

By analogy, the solution to Eq. (20) is

xd
xi

� �
� ~h

�
Fd
Fi

� �
� �� ~Hddxd

0

� ��
(21)

The first term on the right-hand side is just the response of the
tuned system to the external forcing. Taking the other term to the left-
hand side yields

xd
xi

� �
� ~h

� ~Hddxd
0

� �
� xtd

xti

� �
(22)

where the superscript on x denotes the tuned solution to external
forcing.

CHOI, GOTTFRIED, AND FLEETER 19



An entirely equivalent representation is�
I�

~hdd ~hdi
~hid ~hii

� �
� ~Hdd 0

0 0

� ��
xd
xi

� �
� xtd

xti

� �
(23)

where the ~h matrix has been segmented into four parts, entirely

analogous to the ~H matrix segmentation.
The xd vector is solved with

�I� ~hdd� ~Hdd�xd � xtd (24)

The vector y is introduced whose elements are yj � �x�j=�xt�j.
This is the amplification factor vector because jyjj is the ampli-
fication of themistuned system response divided by the tuned system
response. In terms of the amplification factor, Eq. (24) is written as

�I� ~hdd� ~Hdd�yd � 1 (25)

where 1 is a vector of ones of length s.
Once xd is known from Eq. (25), xi is found from Eq. (22):

x i � xtd � ~hid� ~Hddxd (26)

The mistuned matrix � ~Hdd is the difference of the mistuned
system matrix and the tuned system matrix, that is, the difference of

the left-hand sides of Eqs. (12) and (15). Thus � ~Hdd is a diagonal
matrix for which the diagonal terms are �kj.

As an example, consider the case in which only three airfoils are
directly affected bymistuning, that is, s� 3. Label the middle airfoil
0 and arrange the xd vector as f xN�1 x0 x1 gT . Then Eq. (25) is

1� h0�kN�1 hN�1�k0 hN�2�k1
h1�kN�1 1� h0�k0 hN�1�k1
h2�kN�1 h1�k0 1� h0�k1

2
4

3
5 yN�1

y0
y1

2
4

3
5� 1

1

1

2
4

3
5
(27)

VI. Optimization

Designers want to know the worst-case mistuning, obtained by
numerical optimization, that is, the set of �k values that maximize
jy0j. Optimization is performed with a FORTRAN-based direct
search complex algorithmwith limitation of upper and lower bounds.
This optimizer uses the unconstrained nonlinear optimization
schemewith the simplex search method, a direct search algorithm, to
find a minimum point of a function of several variables [21]. There-
fore, the maximum amplification factor and the airfoil mistuned
stiffness distributions are obtained at the given structural and aerody-
namic conditions.

VII. Results

A. Unsteady Aerodynamic Effects: Baseline

To demonstrate the effects of aerodynamic damping on mistuned
rotor amplification factor, simulations are performed for the baseline
rotor summarized in Table 1. The mistuned stiffness has �0:1kt
upper and �0:1kt lower bounds resulting in a maximum �4:9%
change in natural frequency as compared to the tuned frequency.

B. Mistuning Sector Size, s

The validation of the partial-mistuning approximation is addres-
sed for the baseline rotor by predicting the variation of the
amplification factor with sector size s. The baseline case has 24
airfoils, with the mistuning sector size s specifying the number of
airfoils directly affected by the mistuning.

Figure 4 shows the maximum amplification factor versus s for the
baseline geometry and twomechanical damping ratios. Note that the
mistuning stiffness �kj is chosen randomly within the range between
�0:1kt and�0:1kt. Note that the aerodynamic damping factor for the
baseline is �aero � 0:010. For the mechanical damping ratio
�mech � 0:01, the results with and without unsteady aerodynamics,
that is, with and without aerodynamic damping, have a similar

dependence on s, with a 30% difference between the amplification
factor for s� 3 and 23. At a smaller damping ratio of �mech � 0:001,
the structure-only results converge rapidly, with only a 4%difference
in results from s� 7 to 23.

Including unsteady aerodynamics results in a much slower
convergence, with a 15% difference in the amplification factor from
s� 7 to 23. At the smallest damping ratio, �mech � 0:001, the
amplification factors without unsteady aerodynamics also converge
faster than those including the unsteady aerodynamics.

In a comparison of s� 3 to 23 for the two damping ratios with
unsteady aerodynamics, the differences in the amplification factor
are 32 and 42%, respectively, as the damping ratio decreases.

In conclusion, the sector size s is an important parameter. Small
sector sizes minimize the computational time requirements while
providing qualitatively correct results. For high accuracy, on the
order of one-half the number of blades in the rotor is required.

Table 1 Baseline rotor properties

Structural stiffness, kt 3:708 	 103 N
Structural coupling, kc 0:1kt
Number of airfoils, N 24
Natural frequency, !r 600 Hz
SDOF mode Torsion
Spacing-to-chord ratio 1.5
Stagger from axial 61.8 deg
Mach number 0.5
Reduced frequency 1.5633
Nodal diameter, ND N=4
Elastic axis location 44.3% chord

a) ζ mech = 0.01 

b) ζ mech = 0.001 

c) ζ mech = 0.0001 
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Fig. 4 Maximum amplification factor dependence on s for three

mechanical damping values.
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C. Aerodynamic Damping Effects, s� 3

The aerodynamic damping factor for the baseline is �aero�
0:0102, nearly equal to the structural damping of 0.0100. Because
�aero 
 �mech, it is expected that the aerodynamic damping has a
noticeable effect. Note that, for this brief study, a sector size of s� 3
is used, selected to minimize the computational and time require-
ments. Although not ideal, this sector size does provide qualitatively
correct results, as noted in the previous section. In Fig. 5, the aerody-
namic conditions are heldfixedwhile the structural damping is varied
from 0.1 to 0.0001. Very large structural damping, �mech � 0:1,
results in the lowest amplification factors.When �mech � 0:1, �aero �
�mech and the unsteady aerodynamics has relatively little effect on the
amplification factor. The upper-right-hand plot is the baseline case,
and the lower-left-hand plot has �mech � 0:001, so that �aero 
 �mech.
In this case, the unsteady aerodynamics has a very large effect on the
amplification factor, yielding as much as a 50% decrease in
amplification factor at a zero nodal diameter of excitation and a 30%
increase at a nodal diameter ofN=6. Lowering the structural damping
by another order of magnitude results in even larger differences
between the with- and without-unsteady-aerodynamics results.

The effect of changing the aerodynamic damping while holding
the structural damping fixed is shown in Fig. 6. Because �aero is
inversely proportional to !2

r , the aerodynamic damping �aero is
decreased by increasing !r, practically accomplished by increasing
kt. Increasing !r from the baseline of 600–4300 Hz results in
�aero 
 0:001. Because the structural damping is 0.01, the aerody-
namic damping is almost negligible, so that including aerodynamics
has little effect. Next, the aerodynamic damping is increased while
again keeping the structural damping fixed at 0.01. The aerodynamic
damping is increased to approximately 0.03 by decreasing !r to
250 Hz. The unsteady aerodynamics has a large effect on the

amplification factor, increasing it by as much as 25% at a nodal
diameter of 11N=16.

D. Purdue Transonic Axial Compressor

The mistuning analysis including unsteady aerodynamic effects
developed herein is now applied to the geometry of an actual rotor,
the IBR of the Purdue transonic axial compressor for the numerical
simulation. This compressor has an 8.0 in. i.d. and a 12.0 in. o.d., with
20 inlet guide vanes, 18 rotor blades, and 20 stators. With 18 rotor
blades and 20 vanes, the two nodal diameter excitation (ND� 2) is
of interest. The bending mode resonant response with the 20E line
occurs at 17,000 rpm. Assuming upstream stagnation properties at
standard temperature and pressure, the rotor inlet relative Mach
number is 0.84 at 90% span. A summary of the structural and
aerodynamic properties of this IBR model is given in Table 2.

1. IBR Baseline Response

To show the importance of including unsteady aerodynamics in
mistuning models and, hence, the need for the mistuning model
developed herein, the baseline response of the IBR is analyzed. The
airfoil second bending mistuning stiffness distribution determined
from experimental bench testing is shown in Fig. 7. The IBR model
can now be solved as an 18 	 18 system. Optimization is not
performed because the mistuned stiffnesses are known.

Airfoil response amplitude versus the frequency for the 20E
excitation with and without unsteady aerodynamics is shown in
Fig. 8. The frequency is normalized by !2, the natural frequency of
the second bendmode atND� 2, with the amplitudes normalized by
the maximum tuned amplitude without unsteady aerodynamics. A
solid black line represents the tuned normalized amplitude. Note that,
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Fig. 5 Varying structural damping with aerodynamic damping fixed.

a) ω r = 250 Hz (kc = 0.6 ) 

b) ωr = 4300 Hz (kc = 11.2) 
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Fig. 6 Amplification factor at 250 and 4300 Hz (kc � 0:6 and 11.2).

Table 2 IBR structural and aerodynamic properties

Structural stiffness, kt 6:48 	 108 N=m2

Structural damping, �mech 0.001
Structural coupling, kc 0:377kt
Coupling stiffness 0:377kt
SDOF mode (for aero only) Second bending
Spacing-to-chord ratio 1.018
Stagger from axial 64.72 deg
Mach number 0.84
Reduced frequency 6.36
Chord, c 0.05 m
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for a tuned airfoil row, the 20E excitation is orthogonal to all mode
shapes except the 2NDmode shape. Thus, only one peak appears. In
contrast, the mistuned results have several peaks in the frequency
range of 0.96–1.04, a consequence of the distortion of mode shapes
caused by mistuning. The natural mode shapes are distorted and the
20E excitation has nonzero projections onto these mode shapes with
mistuning. As a result, all modes contribute to the response at their
respective natural frequencies. The double peak near !=!2 � 1:0
is the perturbed 2ND mode shape and the perturbed 16ND mode
shape, both of which have natural frequencies close to 1.0.

For the tuned rotor, the ratio of themaximum tuned amplitudewith
unsteady aerodynamics to that without is 0.5580. This is a result of
the additional damping originating from the unsteady aerodynamic
effects. For this case, the mechanical and aerodynamic damping are
equal, that is, �mech � 0:001� �aero.

For the tuned IBR, the ratio of the maximum amplitude with
unsteady aerodynamics to that without is 0.5580. For the mistuned
rotor, airfoil 4 has the peak response amplitude bothwith andwithout
unsteady aerodynamics at!=!2 � 0:997. The ratio of the maximum
amplitude with unsteady aerodynamics to that without for airfoil 4 is
0.488. Also, including aerodynamic damping is of primary
importance whereas the mistuning is only of secondary importance,
with the ratio of the maximum amplitude with unsteady aerody-
namics of the tuned to mistuned IBRs approximately 0.93.

2. IBR Optimal Response

The partial-mistuning optimization model is now applied to the
IBR to determine the optimum mistuning stiffness pattern. First, the
partial-mistuning analysis with s� 7 is used and the effects of
unsteady aerodynamics on the maximum response and optimized
mistuning stiffness pattern analyzed. Second, to investigate the

confidence of the partial-mistuning optimization model, the full-
mistuning optimization model is also applied.

Figure 9 shows the optimum mistuning stiffness pattern with
s� 7. Zero mistuning for airfoils 5–15 is a consequence of the
partial-mistuning model, wherein airfoils far from airfoil 1 are
assumed to be tuned.

The tuned and mistuned resonant response amplitudes and the
corresponding normalized response on each blade at!=!2 � 1:0 for
these optimal mistuning stiffness patterns are investigated. First, the
importance of including or not including unsteady damping on the
IBR blade-to-blade amplitude distributions and maximum response
is considered. The response of each blade determined with aero-
dynamic damping included for an IBR with an optimal mistuning
stiffness pattern determined with unsteady aerodynamics, that is, the
optimally designed IBR, is then presented.

Figure 10 presents the normalized response of each bladewith and
without unsteady aerodynamics, that is, aerodynamic damping, for
the IBR optimal mistuning stiffness pattern determined without
unsteady aerodynamics. Clearly seen is that including aerodynamic
damping significantly alters the response blade-to-blade distribution
and amplitudes. Whereas a number of individual blades have rela-
tively high amplitudes and a number have relatively low amplitudes,
that is, an irregular spiked response distributionwithout aerodynamic
damping, this is not the casewhen aerodynamic damping is included.
With aerodynamic damping, the distribution is relatively smooth,
with only blades 1 and 18 having somewhat high relative amplitudes.
Also, blade 1 exhibits the maximummistuned normalized amplitude
both with and without aerodynamic damping, with this maximum
of 1.54 without unsteady aerodynamics decreasing to 0.79 with
unsteady aerodynamics.

Figure 11 shows the response of the optimally designed IBR.
Presented is the normalized response of each blade predicted,
including aerodynamic damping for an IBR with an optimal mis-
tuning stiffness pattern determined with unsteady aerodynamics.
Also shown for ease of comparison are the previously presented
corresponding results predicted with aerodynamic damping for the
IBR optimized without aerodynamic damping. The predicted blade-
to-blade response results for the two cases are similar, with relatively
smooth blade-to-blade mistuning patterns and only blades 1 and 18
having notably high responses. However, there are blade-to-blade
differences in the individual blade amplitudes. Blade 18 has a higher
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Fig. 7 Airfoil mistuning stiffness pattern.

Fig. 8 Tuned and mistuned normalized amplitude with and without

unsteady aerodynamics.

-0.10

-0.05

0.00

0.05

0.10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Airfoil Number

k j / 
k t

M
is

tu
ni

ng
 P

at
te

rn
, δ

w/o Unsteady Aerodynamics
w/ Unsteady Aerodynamics

-0.10

-0.05

0.00

0.05

0.10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Airfoil Number

k j / 
k t

M
is

tu
ni

ng
 P

at
te

rn
, δ

w/o Unsteady Aerodynamics
w/ Unsteady Aerodynamics
w/o Unsteady Aerodynamics
w/ Unsteady Aerodynamics

Fig. 9 Optimum mistuning stiffness pattern, s� 7.

Fig. 10 Normalized response for optimal mistuning determined

without unsteady aerodynamics, s� 7.

22 CHOI, GOTTFRIED, AND FLEETER



response for the IBR optimized without aerodynamic damping than
that optimized with aerodynamic damping. Blade 1 exhibits the
maximum mistuned normalized response, 0.8730 for the optimally
designed IBR as compared to 0.79 for the IBR optimized without
aerodynamic damping.

E. IBR Optimal Response Verification

The full-mistuning optimization model is applied to the IBR to
demonstrate the validity of the partial-mistuning optimization model
results. Figures 12 and 13 show the full-mistuning optimum mis-
tuning stiffness pattern and the corresponding resonant response,
analogous to the partial-mistuning optimizer s� 7 results.

The optimum mistuning stiffness from the full-mistuning opti-
mizer has a pattern different from the partial-mistuning optimized
pattern. After full-mistuning optimization, the maximum mistuned
amplitude occurs at airfoil 1, with this maximum at 1.7307 without
unsteady aerodynamics and at 0.9333 with unsteady aerodynamics.
These maximum amplitudes are compared to the partial-mistuning
maximum amplitudes in Table 3. For s� 17, the maximum
amplitude without aerodynamics is 2% larger than that achieved
with the full-mistuning model, with this maximum at 1.7682. With
aerodynamics, the s� 17 and full-mistuning normalized amplitudes
are identical to the second decimal place.

VIII. Conclusions

Amistuningmodel has been developed that includes aerodynamic
damping. LINSUB, an inviscid linearized unsteady aerodynamic
damping code, provides the unsteady aerodynamic coefficients that
are converted to influence coefficients suitable for incorporation into
the mistuning model.

Aerodynamic damping has a large effect on the mistuned ampli-
fication factor when the aerodynamic damping is nonnegligible
compared to the structural damping. The aerodynamic damping
parameter �aero provides qualitative knowledge of how much
unsteady aerodynamics will influence the mistuned amplification
factor. If �aero is approximately equal to or larger than the mechanical
damping �mech, aerodynamics plays an important role in the result. If
�aero � �mech, the inclusion of aerodynamics will have little effect.
This is of particular importance for IBRs. Namely, the mechanical
damping is considerably reduced in IBRs, with this analysis having
demonstrated that aerodynamic damping is significant when the
mechanical damping is small. Thus, it is necessary to consider
aerodynamic damping in the vibratory stress analysis of mistuned
IBRs.

A realistic IBR was analyzed that showed if unsteady aerody-
namics are neglected, the computed optimal mistuning pattern is not
optimum in the actual operating environment wherein unsteady
aerodynamic effects are present. Whether or not unsteady aerody-
namics should be included in the mistuning analysis again depends
on the comparison of the aerodynamic damping and the mechanical
damping.
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