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Resonant Response of Mistuned Bladed Disks
Including Aerodynamic Damping Effects
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A mathematical model is developed to investigate the effects of aerodynamic damping on the maximum
amplification factor of mistuned bladed disks. LINSUB, an inviscid linearized unsteady aerodynamic damping code,
provides aerodynamic damping influence coefficients that are incorporated into a partial-mistuning model that takes
advantage of mode localization. This mistuning analysis is then used to demonstrate the effects of aerodynamic
damping on the maximum amplification factor of mistuned bladed disks. The relative importance of aerodynamic
effects is determined by a comparison of aerodynamic damping and structural damping factors. It is shown that
neglecting unsteady aerodynamics may result in the predicted optimal mistuning pattern not being optimum in the
actual operating environment wherein unsteady aerodynamic effects are present.

Nomenclature
Cﬁ = aerodynamic influence of the motion of airfoil k£ on
airfoil j
Cc(B,) unsteady aerodynamic coefficient
c = airfoil chord length
h* = tuned response to single airfoil forcing on airfoil £
k = reduced frequency, wc/U
k. = structural coupling stiffness
k; = structural stiffness of airfoil j
k, = mean or tuned structural stiffness
L; = generalized aerodynamic force of airfoil j
m = generalized inertia per unit span
N = number of airfoils in row
ND = nodal diameter
r = engine order of excitation
s = number of airfoils affected by mistuning
u = fluid velocity
X = generalized displacement
B, = interblade phase angle, 2r/N
1";.' = dimensional aerodynamic influence coefficient
Ok; = mistuned stiffness of airfoil j
= fluid density
gmech dimensionless mechanical damping factor
gaere dimensionless aerodynamic damping factor
w, = resonant frequency of airfoil row
Superscripts
d = directly affected by mistuning

i =
t =

indirectly affected by mistuning
tuned
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I. Introduction

IGH cycle fatigue (HCF) of turbomachine blading resulting

from flow-induced vibration is a significant problem through-
out the gas turbine industry. To address this problem, various
approaches have been developed to predict airfoil resonant response.
In these, the response of a tuned airfoil row, that is, a rotor with
all airfoils having the same structural properties and thus identical
natural frequencies, is analyzed.

In fact, there are small airfoil-to-airfoil structural property
variations that result, for example, from the manufacturing process or
as a consequence of in-service wear. These are collectively referred to
as mistuning and are known to lead to significant increases in airfoil
resonant response amplitude as compared to that of the tuned airfoil
row, with mistuning thus often cited as an HCF source. Hence, the
key metric that characterizes the resonant response of mistuned
bladed disks is the amplification factor, the ratio of the largest res-
ponse amplitude of a mistuned bladed disk to that of a tuned bladed
disk.

The earliest mistuning analyses were deterministic and used
simplified models to produce closed-form expressions to bound the
mistuned rotor maximum response [1,2]. More recently, Kenyon and
Griffin developed a more general analysis that recovers earlier
closed-form expressions as special cases [3]. Direct numerical opti-
mization to estimate the maximal response over a set of mistuning
variations is an alternative deterministic approach [4,5]. Of particular
interest herein is the mistuning model developed by Rivas-Guerra
and Mignolet that takes advantage of mode localization by only
considering a few airfoils on the rotor, that is, airfoils far from the
maximum amplitude airfoil can be considered as tuned airfoils [6].
This partial-mistuning model results in a reduction in the number of
variables in the optimization procedure to determine the mistuning
pattern that results in the largest amplification factor.

One significant phenomenon not addressed in these mistuning
models is the airfoil row unsteady aerodynamics. Because damping
is known to be the important parameter controlling maximum reso-
nant response amplitude, it might be expected that the unsteady
aerodynamics resulting from the vibration of the blading itself, speci-
fically the aerodynamic damping, will have a significant effect on the
resonant response amplitude of tuned and mistuned bladed disks.
Note that the mechanical damping is considerably reduced in newer
rotor designs, particularly those with integral bladed rotors (IBRs)
and those without shrouds. As a result, it is anticipated that aerody-
namic damping will be particularly important in the vibratory
stress analysis of IBRs. Specifically, IBRs inherently have very low
mechanical damping as compared to a traditional bladed rotor.
This very low mechanical damping of IBRs implies that they are
highly susceptible to HCF and also that aerodynamic damping is a
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significant component of the IBR damping and, thus, an important
consideration.

Two families of techniques are used to predict aerodynamic
damping of blade rows: time marching and time linearized. Time-
marching techniques applied to the fluid equations are the most
widely used. In time-linearized analyses, the fluid equations are
linearized by considering the flow unsteadiness to be small compared
to the mean flow. The resulting small disturbance equations are
then solved assuming that the disturbance flow is harmonic with a
constant interblade phase angle between adjacent blades. Time-
linearized models are computationally very efficient as compared to
time-marching ones. Thus, they are well suited for use in a mistuning
simulation, which is directed at determining the maximum ampli-
fication factor of a mistuned rotor.

Unfortunately, the basic assumptions inherent in both time-
marching and linearized unsteady aerodynamic damping analyses
are too restrictive for mistuning simulations. Specifically, the airfoils
are required to oscillate harmonically with uniform amplitude and
a constant phase relationship or interblade phase angle between
airfoils. However, if there are airfoil-to-airfoil material differences,
that is, mistuning, the mistuned airfoils respond in modal patterns
that violate the assumptions of uniform vibration amplitude and
interblade phase angle.

The vibration of mistuned bladed disks with both structural and
aerodynamic coupling has been examined [7—13]. However, recently
developed reduced-order modeling methods provide a new oppor-
tunity to investigate this issue more thoroughly. The compo-
nent mode mistuning [14] (CMM) and subset of nominal system
modes [15] formulations were presented with unsteady aerodynamic
terms included in the system equations of motion. Research has been
recently initiated by Kielb et al. [16] using the FMM method and He
et al. [17] using the CMM method.

This paper is directed at investigating the effects of aerodynamic
damping on the amplification factor of mistuned rotors. First, the
restrictions of uniform blade vibration amplitude and constant
interblade phase angle are removed, accomplished by determining
the influence coefficients that characterize the aerodynamic damping
of each airfoil oscillating with its own unique amplitude. This
aerodynamic damping influence coefficient analysis is then incor-
porated into a lumped parameter mistuning model that takes
advantage of mode localization by considering any specified number
of airfoils on the row. This mistuning analysis including unsteady
aerodynamic damping is then used to demonstrate the effects of
aerodynamic damping on the maximum amplification factor of
mistuned rotors.

II. Unsteady Aerodynamic Model

LINSUB [18] is a semi-analytic unsteady aerodynamic model for
turbomachinery geometries. The model simplifies the turbomachi-
nery blade row to a two-dimensional cascade of flat plate airfoils,
with the flow unsteadiness a small perturbation from the uniform
steady flow. Under these assumptions, LINSUB can model a wide
range of unsteady flow phenomena, including self-induced cas-
cade vibrations, cascade response to gusts, and cascade response to
upstream-going and downstream-going acoustic waves. In each, the
LINSUB model predicts the unsteady pressure on the cascade airfoils
as well as the upstream-going and downstream-going acoustic
signals created by the cascade.

LINSUB requires six inputs: 1) number of control points on the
airfoil n p, 2) spacing-to-chord ratio s/ c, 3) stagger angle y, 4) Mach
number M, 5) reduced frequency k., and 6) interblade phase angle o.
The elastic axis position must also be input, but its value has no effect
in this study. The number of control points for all the cases is set to 30,
determined by means of a study that demonstrated that round-off
error for single-precision LINSUB becomes significant for np much
greater than 30.

LINSUB requires the interblade phase angle to be specified as a
consequence of the assumption that the airfoils oscillate with uniform
amplitude and a known constant phase shift from airfoil to airfoil. Ina
mistuned bladed disk, the airfoils respond in modal patterns that

violate the assumption of uniform amplitude and phase shift. Thus, to
predict the unsteady aerodynamics of a mistuned airfoil row, the
interblade phase angle restriction must be removed. This is accom-
plished by means of an unsteady aerodynamic influence coefficient
technique [19,20]. Namely, for a given mean flowfield and reduced
frequency of oscillation, the cascade unsteady aerodynamics are
expressed in terms of linearly combined influence coefficients. These
influence coefficients can then be used to predict the unsteady aero-
dynamics of a mistuned airfoil row.

For a finite cascade with N airfoils executing constant amplitude
harmonic oscillations with a constant interblade phase angle 3, the
unsteady aerodynamic lift or moment coefficient C(8,) for the
cascade can be expressed as the sum

N=1 _
CB) =Y Creitit: M
k=0

where C? are the complex unsteady aerodynamic influence
coefficients that define the unsteady lift or moment developed on
airfoil j due to the motion of airfoil k£ with all other airfoils stationary.

The term e~"*=)8r satisfies the requirement that C(8,) is the lift or
moment when all airfoils are oscillating with a constant interblade
phase angle 8, = %, where r is an integer engine order ranging from
0to N — 1. Thus, C(8,) has a fundamental period of 2.

The unsteady aerodynamic influence coefficients Cf are not
known directly, but C(B,) is determined directly from LINSUB.

Thus, the Cf are determined by inverting Eq. (1), that is, multiplying
both sides of the equation by ¢’*~/#- and integrating over B, from 0
to 27 [9]:

~ 1 [ o
Ci=5n [ CBre i ap, @

Integrating with the rectangle rule gives
N 1 N-1 )
Ch=22_C(B)e =" 3)
r=0

An example of the moment-due-to-torsion coefficient variation
with B, predicted by LINSUB is shown in Fig. 1. Integrating
according to Eq. (3) yields the influence coefficients for airfoil j
shown in Fig. 2. As expected, the largest influence comes from airfoil
Jj itself, with the influence of neighboring airfoils quickly decreasing
away from airfoil j.

For a tuned airfoil row, C(f,) determined from LINSUB would be
sufficient to model aerodynamic effects because the row oscillates
with constant interblade phase and amplitude. However, for a

. C ~k . .1
mistuned airfoil row, the C; are key in providing the unsteady
aerodynamic effects when there is no constant phase relation
between airfoils and vibration amplitudes differ from airfoil to
airfoil.

III. Mathematical Model

The mistuned rotor forced response model including aerodynamic
damping and coupling effects is depicted in Fig. 3. Note that k. is the
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Fig. 1 Moment-due-to-torsion coefficient: LINSUB.
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Fig. 2 Influence coefficient.

structural airfoil-to-airfoil coupling stiffness; k2 is the unsteady
aerodynamic airfoil-to-airfoil coupling stiftness, that is, the real part
of the unsteady aerodynamic loading; and {*™ is the unsteady
aerodynamic damping, that is, the imaginary part of the unsteady
aerodynamic loading.

The dimensional equation of motion for airfoil j is

m)'(-j + EXj + (kj + 2k )X; — k X; =k Xjp — Ly = F(1) (4)

where F;(t) is the forcing function; X; is the generalized
displacement of airfoil j; ¢ is the structural damping of airfoil j; k.. is
the airfoil-to-airfoil structural coupling stiffness, that is, the effect of
the airfoils being coupled to one another through the disk; ; is the
structural stiffness of airfoil j; and L; is the sum total of aerodynamic
forces on airfoil j due to the vibration of each airfoil in the row, with
this term including the effects of aerodynamic damping {*" and
aerodynamic coupling stiffness k.

Equation (4) applies to a two-dimensional slice through the airfoil
row and models any single-degree-of-freedom (SDOF) mode such as
bending, torsion, or chordwise bending. For example, if torsion is
modeled, m is the moment of inertia, L; is the aerodynamic moment,
F;(#) is the forcing function specified in terms of time varying
moment, and X is the angular displacement of airfoil ;.

The generalized aerodynamic force depends on the SDOF mode
being considered:

N1
L= Z[Cf]Lpuzchk Bending
k=0
Nl
L= Z[Cj]Mpuzchk Torsion
k=0
N
~k . .
L= Z[C_/]CWPMZCZXk Chordwise Bending (5)
k=1

where p denotes the fluid density, ¢ denotes the airfoil chord, and the
superscripts L, M, and CW on the influence coefficients denote lift
due to bending, moment due to torsion, and chordwise bending.

An engine order excitation r is considered, with the forcing
function expressed as

F, (1) = Foei[w,wr(jfl)ﬂr] (6)

Fig. 3 Airfoil row SDOF model.

where the frequency of excitation equals the natural frequency of the
mode.

Neglecting unsteady aerodynamic effects and structural damping
yields the natural frequencies of the system in the closed form.
Equation (4) can be rewritten as a first-order differential equation:

q=1[Dlq @)

where g = {x;, X1, X3, Xp, ..., Xy, Xy 7.
The system matrix [D] can be expressed as

[ D1 Dy D3 - Dy ]
Dy Dy D, -+ Dy,
[Dl=| Dv-1 Dy Dy -+ Dy
L D, Ds Dy - Dy ]
(A B 0 B
B B 0
=0 B A - 0 (8)
B 0 0 -+ A

where [D] is a cyclosymmetric matrix:

0 1 0 O
A:|:k,+2kc 0], B:[_Q 0:| &)

m

and k, is the tuned or mean structural stiffness of the individual
airfoils.

The eigenvalues of this block circular matrix [D] can be expressed
as eigenvalues of a 2 x 2 matrix Q

Q,=D,+d,D,+d3D;+ -+ d¥"'Dy

0 1 0 1
T | kb T kT | T | ki) (10)
m

m

where d,, = exp(i2p/N).
The eigenvalues of the Q,, matrices are

k, + 4k sin*(zp/N)
» = m ’

p=0,1,...,.N—1 (11)
which represent the eigenvalues of the system matrix [D] and, thus,
the natural frequencies of the system with damping and aerodynamic
effects neglected. Physically, the integer p is the nodal diameter of
the mode shape.

For real rotors, Eq. (11) is a good approximation to the true
resonant frequency because damping from both mechanical and
aerodynamic sources is much less than the critical damping value.

The forced response of each airfoil is assumed to be harmonic at
the forcing function frequency w,:

X;(1) = xe™r! j=12,....,N (12)
Equation (4) being forced at frequency w, thus becomes

— I‘:;_zxj,z — (k. + I‘:;_l)xj,l + (8k; + 2k, cos B,
+ iw, & — T)x; — (k, + T Dy

— [‘jﬁ”xﬂz — ... =F,elU-DA 13)

where 8k; = k; — k, is the mistuned stiffness of airfoil j, and I repre-
sents the following aerodynamic terms: Ff = iwpuc[C_l;]L for bend-
ing, Th = puzcz[C_I;]M for torsion, and T% = puzcz[C_l;]CW for
chordwise bending.
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Equation (13) can be rewritten in matrix form as

~1

D, —k.+T3H T} —(ke+T) |
~2
—(k, +T}) D, —(k,+T3) - -
—TI} —(k, +T2) D; -y
L~k +TL)  -TI3% B Dy
X1 Fy
X Foe'fr
X4 X3 b= Foefr (14)
Xy Foei(N—l)ﬁ,

where D; = 8k; + 2k, cos B, + iw,c — T,

Solving the linear system of Eq. (14) for a given set of mistuned
stiffnesses 6k; and aerodynamic and structural conditions yields the
mistuned response of the system including unsteady aerodynamic
effects.

IV. Unsteady Aerodynamic and Structural Effects

The importance of aerodynamic effects relative to the structural
effects is ascertained by examination of Eq. (14). The structural or
mechanical damping effect is the imaginary part of the diagonal term,
that is, w,c. Aerodynamic damping results from the imaginary part of
T ’/‘ and is present in every term in the coefficient matrix of Eq. (14).
However, the diagonal I, that is, I'/ is typically much larger than the
off-diagonal I'. Thus, a comparison of w,¢ and Im(F/ ) is a com-
parison of the relative importance of structural damping and
aerodynamic damping. In terms of the nondimensional damping
parameter, these two quantities are

¢ é—aero — Im(rﬁ)

g-mech —

15)

2mw, 2mw?

If gmech > g% aerodynamic damping has little effect, whereas if
gmeeh  geer aerodynamic damping has a large effect.

Structural coupling from airfoil to airfoil appears as k. in Eq. (4),
with these terms directly affecting the j — 1 and j + 1 airfoils. Thus,
the extent to which the unsteady aerodynamics affects this airfoil-to-
airfoil coupling is determined qualitatively by a comparison of k&,
with the real parts of T i~! and I I+ thatis, the aerodynamic coupling
stiftness of airfoil j — 1 and j + 1. Typically, unsteady aerodynamic
coupling stiffnesses are much less than structural coupling
stiffnesses, and so it is expected that only for extremely small
structural airfoil-to-airfoil coupling will the unsteady aerodynamic
coupling be important.

V. Partial Mistuning

As mistuning stiffnesses are generally not known during design,
mistuning models are directed at finding the largest possible response
given —a < (Skj <a,j=0,1,...,N — 1, with a some real number.
Because the number of airfoils on a row can be large, the number of
required solutions to the N x N system of Eq. (14) can be pro-
hibitively large. For example, if 100 values of 6k; yields adequate
resolution between —a and a, then for a 72-bladed rotor, the 72 x 72
system of Eq. (13) must be solved 10'* times.

The partial-mistuning model mitigates this difficulty by reducing
the number of airfoils on the row that needs be included, an approach
that takes advantage of the mode localization phenomenon. Thus, for
the present model it is necessary to consider only a sector of the
annulus containing s airfoils such that j € [0, p] U [N — p, N — 1]

with s = 2p + 1 typically much less than N, and p is any integer in
0<p<N/2.

The dynamic behavior of the tuned system, that is, 6k ;= Oforall j,
plays a key role in the partial-mistuning solution. The tuned system
response to unit forcing acting only on airfoil k is expressed as a
vector of length N defined as /. That is, A* is the solution to

—TI2hk ) — (k. + TR, + 2k, cos B, + i, — Tt
— (ke + TRk, =T 20k , — =6, (16)

Jjt+1

The mam'x h is defined as the matrix for which the kth column is
h*, thatis, h =[h° h! AV="]. Because the system is tuned
and cyclosymmetrlc R**1 is equivalent to A% with each element
shifted down one and element N moved to element 1. Thus, his
determined by a single solution to the N x N linear system of
Eq. (16) with k = j.

The mistuned system of equation, Eq. (13), is expressed in matrix
form as

Hx=F a7y

With partial mistuning, only a segment of the airfoils are directly
affected by the mistuning, that is, their mistuning stiffnesses are not
zero, whereas the rest of the airfoils have zero mistuning stiffness but
are indirectly affected by mistuning. Accordingly, the solution vector

is divided into two parts:
_JXa
x= { X, } (18)

where d denotes directly affected by mistuning, and i denotes
indirectly affected by mistuning.
Applying this division to Eq. (17) yields

i!dd i!di X | _ | Ea 19

[ Hy, H;]||x E; (19)
The matrix H, aa 1s expressed as the sum of a tuned matrix and a

mistuned counterpart, thatis, H,; = Hyy + AH 4. dk; is zero in the

other three submatrices, and so these are equivalent to their tuned
system counterparts. Thus, Eq. (19) is rewritten as

HY Hy [ xa F, —AH,
~ ~al = 2
|: H, H;]||x F; * 0 *a (20

The coefficient matrix of the left-hand side is now equivalent to
the tuned system coefficient matrix. The mistuned problem can thus
be viewed as a tuned system responding to the two right-hand-side
forcing functions. Based on this observation, the tuned system
response to unit forcing on airfoil k, that s, h*, can be used as a basis
for the solution to the mistuned system.

To illustrate, consider a right-hand-side forcing vector with
elements f;, j=0,1,..., N — 1. The linearity of the system then
allows the solution to be written as Y ; f jhf .

By analogy, the solution to Eq. (20) is

(][] e

The first term on the right-hand side is just the response of the
tuned system to the external forcing. Taking the other term to the left-

hand side yields
Xa | _p Aﬁdd&d _ | Xa
)= - [ @

where the superscript on x denotes the tuned solution to external
forcing.
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An entirely equivalent representation is

I:l; ’Zi Aﬁdd 0 Xq _ Eii
IR |

where the h matrix has been segmented into four parts, entirely
analogous to the H matrix segmentation.
The x, vector is solved with

(I + hggAH9)x, = X, 24)

The vector y is introduced whose elements are y; = (x);/(x");.
This is the amplification factor vector because |y;| is the ampli-
fication of the mistuned system response divided by the tuned system
response. In terms of the amplification factor, Eq. (24) is written as

I+ ’;ddAiIdd)Xd =1 (25)

where 1 is a vector of ones of length s.
Once x, is known from Eq. (25), x; is found from Eq. (22):

=l — higAH 443, (26)

1

I=

The mistuned matrix AH,,; is the difference of the mistuned
system matrix and the tuned system matrix, that is, the difference of
the left-hand sides of Eqs. (12) and (15). Thus AH 4q 18 a diagonal
matrix for which the diagonal terms are 8k;.

As an example, consider the case in which only three airfoils are
directly affected by mistuning, thatis, s = 3. Label the middle airfoil
0 and arrange the x, vector as { xy_; x, x; }7. Then Eq. (25) is

L+ hobky_y  hy_18ky  hy_o8k Yn-1 1
I’llakN,1 1 + h08k0 thl(Skl Yo = 1
ha8ky_ hy ko 1+ hodk, i 1

27

VI. Optimization

Designers want to know the worst-case mistuning, obtained by
numerical optimization, that is, the set of §k values that maximize
|yol- Optimization is performed with a FORTRAN-based direct
search complex algorithm with limitation of upper and lower bounds.
This optimizer uses the unconstrained nonlinear optimization
scheme with the simplex search method, a direct search algorithm, to
find a minimum point of a function of several variables [21]. There-
fore, the maximum amplification factor and the airfoil mistuned
stiffness distributions are obtained at the given structural and aerody-
namic conditions.

VII. Results
A. Unsteady Aerodynamic Effects: Baseline
To demonstrate the effects of aerodynamic damping on mistuned
rotor amplification factor, simulations are performed for the baseline
rotor summarized in Table 1. The mistuned stiffness has +0.1k;,
upper and —0.1k, lower bounds resulting in a maximum +4.9%
change in natural frequency as compared to the tuned frequency.

B. Mistuning Sector Size, s

The validation of the partial-mistuning approximation is addres-
sed for the baseline rotor by predicting the variation of the
amplification factor with sector size s. The baseline case has 24
airfoils, with the mistuning sector size s specifying the number of
airfoils directly affected by the mistuning.

Figure 4 shows the maximum amplification factor versus s for the
baseline geometry and two mechanical damping ratios. Note that the
mistuning stiffness 8k; is chosen randomly within the range between
—0.1k, and +0.1k,. Note that the acrodynamic damping factor for the
baseline is ¢*™ =0.010. For the mechanical damping ratio
¢mech = 0,01, the results with and without unsteady aerodynamics,
that is, with and without aerodynamic damping, have a similar

Table 1 Baseline rotor properties

Structural stiffness, k, 3.708 x 10° N
Structural coupling, k. 0.1%,
Number of airfoils, N 24
Natural frequency, o, 600 Hz
SDOF mode Torsion
Spacing-to-chord ratio 1.5
Stagger from axial 61.8 deg
Mach number 0.5
Reduced frequency 1.5633
Nodal diameter, ND N/4
Elastic axis location 44.3% chord

dependence on s, with a 30% difference between the amplification
factor for s = 3 and 23. At a smaller damping ratio of {™" = 0.001,
the structure-only results converge rapidly, with only a 4% difference
in results from s = 7 to 23.

Including unsteady aerodynamics results in a much slower
convergence, with a 15% difference in the amplification factor from
s=7 to 23. At the smallest damping ratio, ™" = 0.001, the
amplification factors without unsteady aerodynamics also converge
faster than those including the unsteady aerodynamics.

In a comparison of s = 3 to 23 for the two damping ratios with
unsteady aerodynamics, the differences in the amplification factor
are 32 and 42%, respectively, as the damping ratio decreases.

In conclusion, the sector size s is an important parameter. Small
sector sizes minimize the computational time requirements while
providing qualitatively correct results. For high accuracy, on the
order of one-half the number of blades in the rotor is required.
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B w/ Unsteady Aerodynamics
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Fig. 4 Maximum amplification factor dependence on s for three
mechanical damping values.
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Fig. 5 Varying structural damping with aerodynamic damping fixed.

C. Aerodynamic Damping Effects, s = 3

The aerodynamic damping factor for the baseline is (**°=
0.0102, nearly equal to the structural damping of 0.0100. Because
g~ gmech g is expected that the aerodynamic damping has a
noticeable effect. Note that, for this brief study, a sector size of s = 3
is used, selected to minimize the computational and time require-
ments. Although not ideal, this sector size does provide qualitatively
correct results, as noted in the previous section. In Fig. 5, the aerody-
namic conditions are held fixed while the structural damping is varied
from 0.1 to 0.0001. Very large structural damping, {™h = 0.1,
results in the lowest amplification factors. When {mh = 0.1, {2 «
¢mech and the unsteady aerodynamics has relatively little effect on the
amplification factor. The upper-right-hand plot is the baseline case,
and the lower-left-hand plot has {™" = 0.001, so that {2 >> ¢mech,
In this case, the unsteady aerodynamics has a very large effect on the
amplification factor, yielding as much as a 50% decrease in
amplification factor at a zero nodal diameter of excitation and a 30%
increase at a nodal diameter of N /6. Lowering the structural damping
by another order of magnitude results in even larger differences
between the with- and without-unsteady-aerodynamics results.

The effect of changing the aerodynamic damping while holding
the structural damping fixed is shown in Fig. 6. Because {*™ is
inversely proportional to w?, the aerodynamic damping ™ is
decreased by increasing w,, practically accomplished by increasing
k;. Increasing w, from the baseline of 600-4300 Hz results in
£*™ 2 0.001. Because the structural damping is 0.01, the aerody-
namic damping is almost negligible, so that including aerodynamics
has little effect. Next, the aerodynamic damping is increased while
again keeping the structural damping fixed at 0.01. The aerodynamic
damping is increased to approximately 0.03 by decreasing w, to
250 Hz. The unsteady aerodynamics has a large effect on the
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Fig. 6 Amplification factor at 250 and 4300 Hz (k. = 0.6 and 11.2).

amplification factor, increasing it by as much as 25% at a nodal
diameter of 11N/16.

D. Purdue Transonic Axial Compressor

The mistuning analysis including unsteady aerodynamic effects
developed herein is now applied to the geometry of an actual rotor,
the IBR of the Purdue transonic axial compressor for the numerical
simulation. This compressor has an 8.01in.i.d. and a 12.0in. 0.d., with
20 inlet guide vanes, 18 rotor blades, and 20 stators. With 18 rotor
blades and 20 vanes, the two nodal diameter excitation (ND = 2) is
of interest. The bending mode resonant response with the 20E line
occurs at 17,000 rpm. Assuming upstream stagnation properties at
standard temperature and pressure, the rotor inlet relative Mach
number is 0.84 at 90% span. A summary of the structural and
aerodynamic properties of this IBR model is given in Table 2.

1. IBR Baseline Response

To show the importance of including unsteady aerodynamics in
mistuning models and, hence, the need for the mistuning model
developed herein, the baseline response of the IBR is analyzed. The
airfoil second bending mistuning stiffness distribution determined
from experimental bench testing is shown in Fig. 7. The IBR model
can now be solved as an 18 x 18 system. Optimization is not
performed because the mistuned stiffnesses are known.

Airfoil response amplitude versus the frequency for the 20E
excitation with and without unsteady aerodynamics is shown in
Fig. 8. The frequency is normalized by w,, the natural frequency of
the second bend mode at ND = 2, with the amplitudes normalized by
the maximum tuned amplitude without unsteady aerodynamics. A
solid black line represents the tuned normalized amplitude. Note that,

Table 2 1IBR structural and aerodynamic properties

Structural stiffness, &, 6.48 x 10® N/m?

Structural damping, {™meeh 0.001
Structural coupling, k. 0.377k,
Coupling stiffness 0.377k,
SDOF mode (for aero only) Second bending
Spacing-to-chord ratio 1.018
Stagger from axial 64.72 deg
Mach number 0.84
Reduced frequency 6.36
Chord, ¢ 0.05m
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Fig. 7 Airfoil mistuning stiffness pattern.

for a tuned airfoil row, the 20E excitation is orthogonal to all mode
shapes except the 2N D mode shape. Thus, only one peak appears. In
contrast, the mistuned results have several peaks in the frequency
range of 0.96-1.04, a consequence of the distortion of mode shapes
caused by mistuning. The natural mode shapes are distorted and the
20E excitation has nonzero projections onto these mode shapes with
mistuning. As a result, all modes contribute to the response at their
respective natural frequencies. The double peak near w/w, = 1.0
is the perturbed 2N D mode shape and the perturbed 16 ND mode
shape, both of which have natural frequencies close to 1.0.

For the tuned rotor, the ratio of the maximum tuned amplitude with
unsteady aerodynamics to that without is 0.5580. This is a result of
the additional damping originating from the unsteady aerodynamic
effects. For this case, the mechanical and aerodynamic damping are
equal, that is, {™" = 0.001 = ¢*™°,

For the tuned IBR, the ratio of the maximum amplitude with
unsteady aerodynamics to that without is 0.5580. For the mistuned
rotor, airfoil 4 has the peak response amplitude both with and without
unsteady aerodynamics at w/w, = 0.997. The ratio of the maximum
amplitude with unsteady aerodynamics to that without for airfoil 4 is
0.488. Also, including aerodynamic damping is of primary
importance whereas the mistuning is only of secondary importance,
with the ratio of the maximum amplitude with unsteady aerody-
namics of the tuned to mistuned IBRs approximately 0.93.

2. IBR Optimal Response

The partial-mistuning optimization model is now applied to the
IBR to determine the optimum mistuning stiffness pattern. First, the
partial-mistuning analysis with s =7 is used and the effects of
unsteady aerodynamics on the maximum response and optimized
mistuning stiffness pattern analyzed. Second, to investigate the
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confidence of the partial-mistuning optimization model, the full-
mistuning optimization model is also applied.

Figure 9 shows the optimum mistuning stiffness pattern with
s = 7. Zero mistuning for airfoils 5-15 is a consequence of the
partial-mistuning model, wherein airfoils far from airfoil 1 are
assumed to be tuned.

The tuned and mistuned resonant response amplitudes and the
corresponding normalized response on each blade at w/w, = 1.0 for
these optimal mistuning stiffness patterns are investigated. First, the
importance of including or not including unsteady damping on the
IBR blade-to-blade amplitude distributions and maximum response
is considered. The response of each blade determined with aero-
dynamic damping included for an IBR with an optimal mistuning
stiffness pattern determined with unsteady aerodynamics, that is, the
optimally designed IBR, is then presented.

Figure 10 presents the normalized response of each blade with and
without unsteady aerodynamics, that is, aerodynamic damping, for
the IBR optimal mistuning stiffness pattern determined without
unsteady aerodynamics. Clearly seen is that including aerodynamic
damping significantly alters the response blade-to-blade distribution
and amplitudes. Whereas a number of individual blades have rela-
tively high amplitudes and a number have relatively low amplitudes,
thatis, an irregular spiked response distribution without aerodynamic
damping, this is not the case when aerodynamic damping is included.
With aerodynamic damping, the distribution is relatively smooth,
with only blades 1 and 18 having somewhat high relative amplitudes.
Also, blade 1 exhibits the maximum mistuned normalized amplitude
both with and without aerodynamic damping, with this maximum
of 1.54 without unsteady aerodynamics decreasing to 0.79 with
unsteady aerodynamics.

Figure 11 shows the response of the optimally designed IBR.
Presented is the normalized response of each blade predicted,
including aerodynamic damping for an IBR with an optimal mis-
tuning stiffness pattern determined with unsteady aerodynamics.
Also shown for ease of comparison are the previously presented
corresponding results predicted with aerodynamic damping for the
IBR optimized without aerodynamic damping. The predicted blade-
to-blade response results for the two cases are similar, with relatively
smooth blade-to-blade mistuning patterns and only blades 1 and 18
having notably high responses. However, there are blade-to-blade
differences in the individual blade amplitudes. Blade 18 has a higher

2.0

= No Aerodamping
= With Aerodamping

Normalized Response

12 3 456 7 8 9 1011 1213 14 1516 17 18

Airfoil Number

Fig. 10 Normalized response for optimal mistuning determined
without unsteady aerodynamics, s = 7.
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response for the IBR optimized without aerodynamic damping than
that optimized with aerodynamic damping. Blade 1 exhibits the
maximum mistuned normalized response, 0.8730 for the optimally
designed IBR as compared to 0.79 for the IBR optimized without
aerodynamic damping.

E. IBR Optimal Response Verification

The full-mistuning optimization model is applied to the IBR to
demonstrate the validity of the partial-mistuning optimization model
results. Figures 12 and 13 show the full-mistuning optimum mis-
tuning stiffness pattern and the corresponding resonant response,
analogous to the partial-mistuning optimizer s = 7 results.

The optimum mistuning stiffness from the full-mistuning opti-
mizer has a pattern different from the partial-mistuning optimized
pattern. After full-mistuning optimization, the maximum mistuned
amplitude occurs at airfoil 1, with this maximum at 1.7307 without
unsteady aerodynamics and at 0.9333 with unsteady aerodynamics.
These maximum amplitudes are compared to the partial-mistuning
maximum amplitudes in Table 3. For s =17, the maximum
amplitude without aerodynamics is 2% larger than that achieved
with the full-mistuning model, with this maximum at 1.7682. With
aerodynamics, the s = 17 and full-mistuning normalized amplitudes
are identical to the second decimal place.
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Fig. 11 Normalized response with unsteady aerodynamics for the
optimal mistuning stiffness patterns.
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Fig. 12 Optimum mistuning stiffness pattern.
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Fig. 13 Optimized mistuned normalized response after full-mistuning
optimization.

Table 3 Optimized normalized amplitudes for IBR

Max Normalized Amplitude

W/o unsteady aerodynamics W/ unsteady aerodynamics

s=17 1.54 0.87
s=17 1.77 0.93
Full mistuning 1.73 0.93

VIII. Conclusions

A mistuning model has been developed that includes aerodynamic
damping. LINSUB, an inviscid linearized unsteady aerodynamic
damping code, provides the unsteady aerodynamic coefficients that
are converted to influence coefficients suitable for incorporation into
the mistuning model.

Aerodynamic damping has a large effect on the mistuned ampli-
fication factor when the aerodynamic damping is nonnegligible
compared to the structural damping. The aerodynamic damping
parameter ¢*™ provides qualitative knowledge of how much
unsteady aerodynamics will influence the mistuned amplification
factor. If {** is approximately equal to or larger than the mechanical
damping ™", aerodynamics plays an important role in the result. If
g gmech the inclusion of aerodynamics will have little effect.
This is of particular importance for IBRs. Namely, the mechanical
damping is considerably reduced in IBRs, with this analysis having
demonstrated that aerodynamic damping is significant when the
mechanical damping is small. Thus, it is necessary to consider
aerodynamic damping in the vibratory stress analysis of mistuned
IBRs.

A realistic IBR was analyzed that showed if unsteady aerody-
namics are neglected, the computed optimal mistuning pattern is not
optimum in the actual operating environment wherein unsteady
aerodynamic effects are present. Whether or not unsteady aerody-
namics should be included in the mistuning analysis again depends
on the comparison of the aerodynamic damping and the mechanical
damping.
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